

Graph Transformations – Worked Examples

Key Facts / Formulas

- **Reflections:** replacing y by $-y$ reflects a graph in the x -axis; replacing x by $-x$ reflects it in the y -axis
- **Translations:** $x \mapsto x - h$ shifts a graph h units right ($h > 0$) or left ($h < 0$); $y \mapsto y - k$ shifts it k units up or down
- **Dilations:** $x \mapsto \frac{x}{a}$ stretches horizontally by a factor a ; $y \mapsto \frac{y}{b}$ stretches vertically by a factor b (enlargement if $b > 1$, reduction if $0 < b < 1$)
- **Order matters:** applying dilations before translations usually gives a different image than the reverse
- Combined transformations can be described by tracing each change back to the basic graph.

Example 1 Reflection in the x -axis

Start with $y = \sqrt{x}$. Replace y by $-y \Rightarrow -y = \sqrt{x} \implies y = -\sqrt{x}$. Graph flips upside-down; domain $x \geq 0$, range $y \leq 0$.

$$y = -\sqrt{x}$$

Example 2 Horizontal translation

Graph $y = |x|$ is shifted 3 units right: $x \mapsto x - 3$. Equation becomes $y = |x - 3|$. Vertex moves from $(0, 0)$ to $(3, 0)$.

$$y = |x - 3|$$

Example 3 Vertical stretch

Begin with $y = \frac{1}{x}$. Apply vertical dilation factor 2: $y \mapsto \frac{y}{2}$ so $2y = \frac{1}{x} \Rightarrow y = \frac{1}{2x}$. Horizontal asymptote unchanged ($y = 0$); vertical asymptote $x = 0$.

$$y = \frac{1}{2x}$$

Example 4 Combined shift and stretch

Transform $y = x^2$ by “stretch vertically by $k = 3$ then up by 4”. Equation: $y = 3x^2 + 4$. Vertex $(0, 0) \rightarrow (0, 4)$, axis $x = 0$.

$$y = 3x^2 + 4$$

Example 5 Horizontal dilation and reflection

Given $y = \sqrt{x}$, perform “reflect in y -axis then stretch horizontally by 5”. Step1: reflection $x \mapsto -x$ gives $y = \sqrt{-x}$. Step2: dilation $x \mapsto \frac{x}{5} \Rightarrow y = \sqrt{-\frac{x}{5}}$. Domain $x \leq 0$, range $y \geq 0$.

$$y = \sqrt{-\frac{x}{5}}$$

Example 6 Identifying transformations

The graph of $y = -(x + 2)^2 + 1$. Read off: shift left 2, reflect in x -axis (leading negative), shift up 1. Vertex at $(-2, 1)$, opens downward, axis $x = -2$.

Left2, reflect x -axis, up1

Example 7 Circle by translation

Start with unit circle $x^2 + y^2 = 1$. Translate centre to $(4, -3)$. Replace x by $x - 4$, y by $y + 3$: $(x - 4)^2 + (y + 3)^2 = 1$. Centre $(4, -3)$, radius 1.

$$(x - 4)^2 + (y + 3)^2 = 1$$

Example 8 Piecewise absolute value

Let $f(x) = |x - 2| + 1$. Describe transformations of $y = |x|$. Shift right 2, up 1. V-shape vertex at $(2, 1)$. Equation already given.

Right2, up1

Example 9 Order of transformations

Show two orders differ: start $y = x^3$, apply stretch $y \mapsto 2y$ and right shift $x \mapsto x - 1$. *OrderA*: stretch then shift $\Rightarrow y = 2(x - 1)^3$. *OrderB*: shift then stretch $\Rightarrow y = 2x^3 - 2$. Distinct graphs, confirming order matters :contentReference[oaicite:10]index=10.

Order changes result

Example 10 Finding rule from graph

A transformed graph of $y = \frac{1}{x}$ has vertical asymptote $x = 3$, horizontal asymptote $y = -2$ and passes through $(4, -1)$. General form $y = \frac{k}{x - 3} - 2$. Substitute point: $-1 = \frac{k}{4 - 3} - 2 \Rightarrow k = 1$.

$$y = \frac{1}{x - 3} - 2$$