

Further Graph Transformations and Modelling – Worked Examples

Key Facts / Formulas

- Master transformation: $y = A f(B(x - h)) + k$.
Horizontal shift h right; vertical shift k up; vertical dilation factor $|A|$ (reflection in x -axis if $A < 0$); horizontal dilation factor $1/|B|$ (reflection in y -axis if $B < 0$).
- Domains transform via $x \mapsto \frac{x - h}{B}$; ranges multiply by A and shift by k .
- Vertical asymptotes of f at $x = a$ map to $B(x - h) = a \Rightarrow x = h + \frac{a}{B}$. Horizontal asymptote $y = L$ maps to $y = AL + k$.
- Reciprocal forms: $y = \frac{p}{x - q} + r$ has asymptotes $x = q$ and $y = r$; $y = \frac{p}{(x - q)^2} + r$ is always above/below r depending on $\text{sign}(p)$.
- Absolute value: $|u| = \begin{cases} u, & u \geq 0 \\ -u, & u < 0 \end{cases}$; reflect the negative part of u in the x -axis.
- Log-linearisation:
Exponential $y = ab^x \Rightarrow \ln y = \ln a + x \ln b$ (linear in x).
Power $y = kx^n \Rightarrow \ln y = \ln k + n \ln x$ (linear in $\ln x$).
Logarithmic $y = a + b \ln x$ is already linear in $\ln x$.

Example 1 Mapping asymptotes and intercepts under A, B, h, k

Let $f(x) = \frac{1}{x}$, with asymptotes $x = 0$, $y = 0$. Consider

$$y = g(x) = -3 f(2(x - 4)) + 5 = -3 \cdot \frac{1}{2(x - 4)} + 5 = -\frac{3}{2(x - 4)} + 5.$$

Asymptotes. Vertical: $2(x - 4) = 0 \Rightarrow x = 4$. Horizontal: $y = A \cdot 0 + k = 5$.

Intercepts. x -intercept: solve $0 = -\frac{3}{2(x - 4)} + 5 \Rightarrow \frac{3}{2(x - 4)} = 5 \Rightarrow 2(x - 4) = \frac{3}{5} \Rightarrow x = 4 + \frac{3}{10} = 4.3$.

y -intercept: $x = 0$ gives $y = -\frac{3}{2(-4)} + 5 = \frac{3}{8} + 5 = \frac{43}{8} = 5.375$.

VA $x = 4$, HA $y = 5$, x -int $(4.3, 0)$, y -int $(0, 5.375)$

Example 2 Domain and range under a transformation

Let $f(x) = \sqrt{x}$ with domain $[0, \infty)$, range $[0, \infty)$. Define

$$y = g(x) = 2 f(1 - 3x) - 4 = 2\sqrt{1 - 3x} - 4.$$

Set $1 - 3x \geq 0 \Rightarrow x \leq \frac{1}{3}$. Thus $\text{dom}(g) = (-\infty, \frac{1}{3}]$.

For the range, set $u = 1 - 3x \in [0, \infty)$: $\sqrt{u} \in [0, \infty)$, so $2\sqrt{u} \in [0, \infty)$ and $2\sqrt{u} - 4 \in [-4, \infty)$. Therefore

$$\boxed{\text{dom} = (-\infty, \frac{1}{3}], \text{ range} = [-4, \infty).}$$

Example 3 Absolute value as a piecewise transform

Sketch $y = |2x - 5| - 3$. Vertex occurs when $2x - 5 = 0 \Rightarrow x = 2.5$, then $y = -3$.

Piecewise:

$$y = \begin{cases} (2x - 5) - 3 = 2x - 8, & x \geq 2.5, \\ -(2x - 5) - 3 = -2x + 2, & x < 2.5. \end{cases}$$

Intercepts: y -intercept $x = 0 \Rightarrow y = |-5| - 3 = 2$. x -intercepts solve $|2x - 5| = 3$: $2x - 5 = 3 \Rightarrow x = 4$ or $2x - 5 = -3 \Rightarrow x = 1$.

$$\boxed{\text{Vertex } (2.5, -3), \text{ } x\text{-ints } (1, 0), (4, 0), \text{ } y\text{-int } (0, 2)}$$

Example 4 Fitting a rectangular hyperbola $y = \frac{p}{x - q} + r$

A graph has vertical asymptote $x = 3$ and horizontal asymptote $y = -2$, and passes through $(1, 1)$. Find p, q, r .

Form $y = \frac{p}{x - 3} - 2$. Sub $(1, 1)$:

$$1 = \frac{p}{1 - 3} - 2 = \frac{p}{-2} - 2 \Rightarrow \frac{p}{-2} = 3 \Rightarrow p = -6.$$

Thus

$$\boxed{y = -\frac{6}{x - 3} - 2.}$$

Example 5 Determining A, B, h, k from a point and asymptotes

A curve has the form $y = A \frac{1}{B(x - h)} + k$, with asymptotes $x = 2$ and $y = 1$. It passes through $(4, \frac{3}{2})$. Find A and B .

From asymptotes: $h = 2$, $k = 1$. Then

$$\frac{3}{2} = A \frac{1}{B(4 - 2)} + 1 = \frac{A}{2B} + 1 \Rightarrow \frac{A}{2B} = \frac{1}{2} \Rightarrow A = B.$$

Choose $A = B$ (nonzero). Any common nonzero value works; simplest $A = B = 1$. Hence

$$\boxed{y = \frac{1}{x - 2} + 1 \quad (\text{one convenient model})}$$

(Any $A = B \neq 0$ gives the same point and asymptotes; data would be needed to fix scale.)

Example 6 Exponential model through two points

Suppose $y = ab^x$ fits $(0, 4)$ and $(3, 27)$. Find a, b and predict y when $x = 5$.

$(0, 4)$ gives $a = 4$. Then $27 = 4b^3 \Rightarrow b^3 = \frac{27}{4} \Rightarrow b = \left(\frac{27}{4}\right)^{1/3} = \frac{3}{\sqrt[3]{4}}$. Prediction:

$$y(5) = 4b^5 = 4 \left(\frac{27}{4}\right)^{5/3} = 4 \cdot \frac{3^5}{4^{5/3}} = \frac{972}{4^{2/3}} \approx 972 (0.62996) \approx 612.$$

$$a = 4, b = \left(\frac{27}{4}\right)^{1/3}, y(5) \approx 6.12 \times 10^2$$

Example 7 Power model via log-log linearisation

Resistance force F on a sphere varies with speed v as $F = kv^n$. Measurements: $(v, F) = (2, 18), (5, 140)$. Find k, n .

$\ln F = \ln k + n \ln v$. Slope using the two points:

$$n = \frac{\ln 140 - \ln 18}{\ln 5 - \ln 2} = \frac{\ln(140/18)}{\ln(5/2)} = \frac{\ln(7.777\dots)}{\ln 2.5} \approx \frac{2.051}{0.9163} = 2.239.$$

Then $k = \frac{F}{v^n} = \frac{18}{2^{2.239}} = 18/4.724 \approx 3.81$. So

$$F \approx 3.81 v^{2.24}$$

Example 8 Logarithmic model $y = a + b \ln x$ from two data points

Data: $(x, y) = (1, 4.2)$ and $(e, 6.0)$. Fit $y = a + b \ln x$.

At $x = 1$: $4.2 = a + b \cdot 0 \Rightarrow a = 4.2$. At $x = e$: $6.0 = 4.2 + b \cdot 1 \Rightarrow b = 1.8$.

$$y = 4.2 + 1.8 \ln x$$

Example 9 Transforming a restricted domain

Let $f(x) = \sqrt{4-x}$ with domain $(-\infty, 4]$, range $[0, \infty)$. Consider $y = g(x) = -\frac{1}{2}f\left(\frac{x+1}{2}\right) + 3$.

Domain condition: $\frac{x+1}{2} \leq 4 \Rightarrow x+1 \leq 8 \Rightarrow x \leq 7$. Thus $\text{dom}(g) = (-\infty, 7]$.

Range: $f(u) \in [0, \infty)$ so $-\frac{1}{2}f(u) \in (-\infty, 0]$, then add 3: $(-\infty, 3]$. Hence

$$\text{dom } (-\infty, 7], \text{ range } (-\infty, 3].$$

Key points: when $u = 0$ i.e. $(x+1)/2 = 0 \Rightarrow x = -1$, then $g(-1) = 3$; when $u = 4$ ($x = 7$), $g(7) = 3 - \frac{1}{2}\sqrt{0} = 3$; decreasing to the left.

Example 10 Reciprocal quadratic model with given extremum level

A curve of the form $y = \frac{a}{(x-1)^2} + c$ has a minimum value $y = 5$ attained at $x \neq 1$,

and passes through $(3, 6)$. Find a, c .

Since $(x - 1)^2 > 0$ for $x \neq 1$, the sign of a decides whether y is above or below c . A minimum at value 5 implies $a > 0$ and $c = 5$ (approaches 5 from above as $|x - 1| \rightarrow \infty$). Use the point $(3, 6)$:

$$6 = \frac{a}{(3 - 1)^2} + 5 = \frac{a}{4} + 5 \Rightarrow a = 4.$$

$$y = \frac{4}{(x - 1)^2} + 5$$