

Differentiation – Question Set

First Principles & Power Rule

Q1 Use first principles to find $f'(x)$ for $f(x) = x^2 + 3$.

Q2 Show from first principles that $\frac{d}{dx}(x^3) = 3x^2$.

Q3 (a) Differentiate $y = 7x^4$ (b) $y = 5x^{-2}$

Q4 Find $\frac{d}{dx}(4\sqrt{x})$.

Q5 If $y = \frac{3}{\sqrt[3]{x}}$, determine y' .

Sum, Difference & Constant Multiple

Q6 (a) $y = 6x^3 - 5x$ (b) $y = 9 - 4x^2 + x^5$

Q7 Differentiate $y = 2x^{\frac{1}{2}} + 7x^{\frac{3}{2}} - 8$.

Q8 Given $f(x) = x^4 - 2x^2 + 1$ and $g(x) = 5x - 3$, find $\frac{d}{dx}[3f(x) - 2g(x)]$.

Tangents & Normals

Q9 For $y = x^3 - 2x$, find the gradient at $x = -1$.

Q10 Determine the equation of the tangent to $y = 4x^2 - 7$ at $x = 1.5$.

Q11 A curve has equation $y = x^4 - 16x$. Find the equation of the normal at $x = 2$.

Q12 A function satisfies $f(1) = 6$ and $f'(1) = -3$. Write the tangent line through $(1, 6)$.

Stationary Points & Shape

Q13 Find and classify the stationary points of $y = 2x^3 - 9x^2 + 12x$.

Q14 Determine the x -coordinates of any local maxima of $y = x^4 - 6x^2 + 4$.

Q15 (a) Locate stationary points for $y = 5x^2 - 20x + 17$ (b) Is the point a max or min?

Q16 If $f'(x) = 0$ at $x = 4$ and $f''(4) = 0$, what further test is required to classify the point?

Motion – Velocity & Acceleration

Q17 A particle moves so that $s(t) = 3t^3 - 12t$ (metres).

- (a) Find $v(t)$ and $a(t)$.
- (b) When is the particle momentarily at rest?

Q18 Given $s(t) = 10\sqrt{t} - t^2$, find velocity at $t = 4$ s.

Q19 A car's velocity is $v(t) = 12t^2 - 30t + 18$ (m/s). Determine its acceleration after 2.5s.

Optimisation Basics

Q20 The area of a rectangle is $A = x(30 - 2x)$ m².

- (a) Find $A'(x)$.
- (b) What width x maximises the area?

Q21 A manufacturer wants to minimise surface area of an open box with square base and fixed volume 4900 cm³. List the derivative equation that must be solved to find the optimal base edge x .

Q22 Show that among all right triangles with hypotenuse 10cm, the isosceles right triangle encloses the maximum area.

Mixed Practice

Q23 (a) Differentiate $y = (5x + 2)(x^2 - 1)$

(b) Differentiate $y = \frac{6}{x^3} + 4x$

Q24 Find the gradient of $y = x^{\frac{4}{3}}$ at $x = 1$.

Q25 Prove that $\frac{d}{dx}(x^n) = nx^{n-1}$ for $n = -1$ using the limit definition.

Q26 The line $y = 3x - 8$ is tangent to the curve $y = x^3 + ax^2 + bx$. Find a and b .

Challenge

Q27 Designing a Minimum-Cost Can A cylindrical can must hold 1.2L. Metal for the side costs \$0.04/cm² and for the circular top/bottom \$0.06/cm².

- (a) Express the total cost $C(r)$ in terms of the radius r (cm).
- (b) Show that $C'(r) = 0$ leads to $r^3 = \frac{0.60}{\pi}$ (approx.).
- (c) Hence find the optimal radius and height, and the minimum cost (nearest cent).