

Financial Mathematics – Question Set

Simple Interest and Comparisons

Q1 A term deposit of \$7500 earns simple interest at 4.2 % p.a. for 18 months. Find the interest and maturity value.

Q2 \$18400 is invested at 3.6 % p.a. simple for 230 days. Use a 365 day year. Find the interest.

Q3 How long (in years) will \$12000 take to earn \$2700 interest at $r = 5.4\%$ p.a. simple?

Q4 What simple rate r gives \$1980 interest on \$22000 over 8 months?

Compound Interest, Nominal and Effective Rates

Q5 \$12000 is invested at 5.6 % p.a. compounded quarterly for 4 years. Find the future value.

Q6 \$9500 is invested at 6.1 % p.a. compounded monthly. Find the value after 2 years 3 months.

Q7 Find the effective annual rate equivalent to 18.0 % p.a. compounded monthly.
Find the effective annual rate equivalent to 12.0 % p.a. compounded quarterly.

Q8 A fund advertises an EAR of 6.35 %. What nominal rate compounded monthly is equivalent?

Q9 Money triples under continuous compounding at rate r . Find r to 3 d.p.

Q10 At what time will an investment double at 6.0 % p.a. compounded: (a) annually
(b) monthly (Use the same nominal rate 6.0 %.)

Present Value, Discounting and Real Rates

Q11 You need \$25000 in 5 years. If the annual compounding rate is 5.1 %, how much must be invested now?

Q12 A machine replacement will cost \$48000 in 4 years. The firm earns 7.0 % effective. What is the present value?

Q13 Inflation averages 2.6 % p.a. while an account returns 7.2 % effective. Find the real rate to 2 d.p. %.

Q14 A scholarship pays \$6000 in three years. If the fund earns 4.4 % effective, what single deposit now will finance it?

Annuites – Savings (payments at period ends)

Q15 You deposit \$350 at the end of each month into an account paying 4.8 % p.a. compounded monthly. What is the balance after 6 years?

Q16 A saver deposits \$120 fortnightly into an account earning 5.2 % p.a. compounded fortnightly. Find the balance after 8 years.

Q17 You plan to accumulate \$180 000 in 15 years using monthly payments into an account at 5.1 % p.a. compounded monthly. Find the required monthly payment.

Q18 A parent invests \$2 000 at the start of each year for 12 years into an account earning 6.0 % p.a. compounded annually. Find the future value. (Hint: convert to an equivalent end-of-year annuity.)

Loans and Amortisation

Q19 A car loan of \$28 000 is to be repaid monthly over 5 years at 6.6 % p.a. compounding monthly. Find the monthly repayment.

Q20 On the loan in Q0, find the principal remaining after 2 years of payments.

Q21 A home loan of \$560 000 is repaid monthly for 30 years at 5.40 % p.a. compounding monthly. Find the monthly repayment.
Find the total interest paid over the life of the loan.

Q22 A student borrows \$18 000 at 7.2 % p.a. compounded monthly to be repaid by equal monthly payments over 4 years. After 18 payments the student makes a lump sum of \$4 000 and continues regular payments. Find the number of remaining payments (nearest whole).

Q23 A loan of \$96 000 is repaid quarterly over 8 years at $i = 1.35\%$ per quarter. Construct the first two lines of the amortisation schedule showing opening balance, interest, principal repaid and closing balance.

Annuites – Present Value Streams

Q24 A company leases equipment for 5 years, paying \$1 250 at the end of each month. If the discount rate is 6.0 % p.a. compounded monthly, find the present value of the lease.

Q25 A retiree wants \$3 200 per month for 20 years. The fund earns 4.8 % p.a. compounded monthly. How much must be in the account at retirement?

Q26 A trust will pay \$15 000 at the end of each year for 10 years. If money earns 5.5 % effective, what single deposit now is equivalent?

Depreciation

Q27 Equipment costing \$62 000 depreciates at 18 % p.a. reducing balance. Find its value after 5 years.

Q28 A vehicle depreciates from \$48 500 to \$24 700 over 4 years using straight line. Find the annual depreciation and the book value after 3 years.

Q29 A computer system costs \$32 000 and is depreciated at 30 % p.a. reducing balance. After how many years will its value first fall below \$5 000?

Mixed Applications

Q30 You borrow \$3 500 on a credit card charging 18 % p.a. compounded monthly. If you pay \$150 at the end of each month, how many months to clear the balance?

Q31 A saver invests \$400 per month for 10 years at 4.2 % p.a. compounded monthly, then leaves the accumulated amount for a further 5 years at 5.0 % p.a. compounded annually. Find the final amount.

Q32 A project requires initial capital \$220 000 and pays \$52 000 at the end of each year for 6 years. If the discount rate is 8.0 % effective, find the net present value (NPV) and state whether the project is acceptable.

Q33 A car dealer offers two options on a \$42 000 car:
 (A) \$2 000 cashback and a loan for the balance at 6.9 % p.a. compounded monthly over 5 years.
 (B) No cashback, but 4.9 % p.a. compounded monthly over 5 years.
 Compare monthly repayments and total cost to decide the cheaper option.

Q34 An account advertises 6.0 % p.a. interest compounded monthly with a \$5 monthly account fee charged at month end. You deposit \$10 000 and make no further transactions. Model the balance B_n at the end of month n and compute B_{24} .

Challenge Question

Q35 Saving for a home deposit with step-up contributions

You aim to save a \$120 000 deposit in 7 years. An account pays 5.1 % p.a. compounded monthly. You can contribute \$900 per month for the first 24 months, then increase the monthly contribution by \$150 every 12 months thereafter (i.e. months 25–36: \$1 050, months 37–48: \$1 200, months 49–60: \$1 350, months 61–72: \$1 500, and months 73–84: \$1 650). All deposits are made at month ends.

- Write the balance after 7 years as a sum of annuity future values and compute the total.
- If the total is short of \$120 000, find the single extra lump sum required at the end of month 84 to reach the goal.

- (c) Alternatively, if you insist on no final lump sum, determine the constant monthly contribution for all 84 months that reaches \$120 000.
- (d) If inflation averages 2.7 % p.a., what is the real value of the \$120 000 target in today's dollars?