

Exponential & Logarithmic Functions – Worked Examples

Key Facts / Formulas

- Exponential form: $y = ab^x$ with $a \neq 0$, $b > 0$, $b \neq 1$. Asymptote $y = 0$, y -intercept $(0, a)$.
- Natural base e (≈ 2.71828) is defined so that $\frac{d}{dx}(e^x) = e^x$.
- Logarithm definition: $x = b^y \iff y = \log_b x$ for $b > 0$, $b \neq 1$.
- Log laws: $\log_b(MN) = \log_b M + \log_b N$; $\log_b\left(\frac{M}{N}\right) = \log_b M - \log_b N$; $\log_b(M^k) = k \log_b M$.
- Change of base: $\log_b x = \frac{\log_k x}{\log_k b}$ (any positive $k \neq 1$).
- Exponential growth/decay: $N = N_0 b^t$. Doubling time $t = \frac{\ln 2}{\ln b}$.

Example 1 Sketching an exponential

Plot $y = 3(0.5)^x$. State intercept, asymptote and describe end behaviour.

At $x = 0$, $y = 3$ (intercept).

As $x \rightarrow \infty$, $y \rightarrow 0^+$ (approaches asymptote $y = 0$). As $x \rightarrow -\infty$, $y \rightarrow \infty$.

Asymptote $y = 0$, y -int $(0, 3)$

Example 2 Finding b from a point

If $y = ab^x$ passes through $(0, 5)$ and $(4, 80)$, find a and b .

From $(0, 5)$: $a = 5$.

$80 = 5b^4 \implies b^4 = 16 \Rightarrow b = 2$.

$a = 5, b = 2$

Example 3 Solving an exponential equation

Solve $7e^{0.3t} = 120$ for t .

$$e^{0.3t} = 120/7 = 17.14$$

$$0.3t = \ln 17.14 = 2.842$$

$$t = 9.47 \text{ (units).}$$

$t \approx 9.5$

Example 4 Using change of base

Evaluate $\log_7 45$ correct to three decimal places.

$$\log_7 45 = \frac{\ln 45}{\ln 7} = 2.602/1.946 = 1.337$$

1.337

Example 5 Simplifying with log laws

Simplify $\log_3 27 + \frac{1}{2} \log_3 9 - \log_3 5$.

$$\log_3 27 = 3, \frac{1}{2} \log_3 9 = \frac{1}{2} \cdot 2 = 1$$

$$\text{Total} = 3 + 1 - \log_3 5 = 4 - \log_3 5.$$

4 - $\log_3 5$

Example 6 Doubling time

Population grows by 6% per year. How long to double?

$$b = 1.06; t = \frac{\ln 2}{\ln 1.06} = 0.6931/0.0583 = 11.9 \text{ years.}$$

12 years (approx.)

Example 7 Logarithmic form

Rewrite (a) $10^x = 0.037$; (b) $y = \ln 8$ in the other form.

$$(a) x = \log_{10} 0.037. \quad (b) e^y = 8.$$

(a) $x = \log 0.037$; (b) $e^y = 8$

Example 8 Solving with logarithms

Solve $5^{2x-1} = 27$.

$$2x - 1 = \log_5 27 = \frac{\ln 27}{\ln 5} = 2.628/1.609 = 1.63$$

$$x = 1.315.$$

$x \approx 1.32$

Example 9 Exponential model from data

Bacteria count is 4.8×10^3 at $t = 0$ and 1.9×10^4 at $t = 6$ h. Assume $N = N_0 b^t$. Determine b and predict count at $t = 9$ h.

$$b^6 = 1.9 \times 10^4 / 4.8 \times 10^3 = 3.958 \Rightarrow b = 3.958^{1/6} = 1.25.$$

$$N_9 = 4.8 \times 10^3 (1.25)^9 = 4.8 \times 10^3 \times 7.45 = 3.58 \times 10^4.$$

$b \approx 1.25, N_9 \approx 3.6 \times 10^4$

Example 10 Intersecting exponential and linear

Find the x where $2^x = 3x + 1$ (one correct DP).

Trial or CAS: $x = 1$ ($2 < 4$), $x = 2$ ($4 < 7$), $x = 3$ ($8 > 10$), $x = 2.5$ ($5.66 < 8.5$), $x = 2.1$ ($4.29 < 7.3$), $x = 2.7$ ($6.48 < 9.1$), $x = 2.9$ ($7.47 < 9.7$), $x = 3.1$ ($8.57 > 10.3$). Refining gives $x \approx 3.0$. Using CAS solver: $x = 3.03$ (1 d.p. 3.0).

$$x \approx 3.0$$