

Probability & Data – Worked Examples

Key Facts / Formulas

- **Mean:** $\bar{x} = \frac{\sum x}{n}$; **median:** middle ordered value; **mode:** most frequent.
- **Sample variance:** $s^2 = \frac{\sum(x - \bar{x})^2}{n - 1}$; **standard deviation:** $s = \sqrt{s^2}$.
- **Five-number summary:** $(\min, Q_1, \text{median}, Q_3, \max)$; $\text{IQR} = Q_3 - Q_1$.
- **Relative frequency:** $P(E) \approx \frac{\text{frequency of } E}{\text{total trials}}$.
- **Probability rules:** $0 \leq P(E) \leq 1$; $P(E^c) = 1 - P(E)$; for independent A, B : $P(A \cap B) = P(A)P(B)$.
- **Two-way table:** conditional probability $P(A | B) = \frac{P(A \cap B)}{P(B)}$.
- **Expected value:** $E(X) = \sum x P(X = x)$ for a discrete variable X .
- **Binomial model:** $P(X = r) = \binom{n}{r} p^r (1 - p)^{n-r}$; $\mu = np$, $\sigma = \sqrt{np(1 - p)}$.

Example 1 Mean, median, mode

Data set (scores): 12, 15, 18, 15, 22, 15, 17, 20.

$\bar{x} = \frac{134}{8} = 16.8$. Ordered: 12, 15, 15, 15, 17, 18, 20, 22; median = $(15 + 17)/2 = 16$. Mode = 15.

$$\boxed{\bar{x} = 16.8, \text{ median } 16, \text{ mode } 15}$$

Example 2 Standard deviation

Using data from Example1.

$$\sum(x - \bar{x})^2 = 46.4; \quad s = \sqrt{\frac{46.4}{7}} = 2.57$$

$$\boxed{s \approx 2.6}$$

Example 3 Five-number summary

Weights (kg): 48, 55, 61, 62, 65, 67, 71, 73, 74, 78.

$\min = 48$, $Q_1 = 59$, median = 64, $Q_3 = 72$, $\max = 78$. $\text{IQR} = 13$.

$$\boxed{(48, 59, 64, 72, 78)}$$

Example 4 Relative frequency estimate

A spinner landed on blue 92 times in 400 spins. Estimate $P(\text{blue})$.

$$P \approx 92/400 = 0.23.$$

$$0.23$$

Example 5 Complementary probability

Bag: 5 red, 7 green, 4 blue marbles. Draw one at random. $P(\text{not green}) = 1 - P(\text{green}) = 1 - \frac{7}{16} = 0.5625$.

$$0.563$$

Example 6 Conditional probability from two-way table

	Likes Maths	Dislikes Maths	Total
Female	28	12	40
Male	22	18	40
Total	50	30	80

Pick a student who likes maths. $P(\text{female} \mid \text{likes}) = 28/50 = 0.56$.

$$0.56$$

Example 7 Expected value of a game

Fair die: win \$6 for a 6, \$2 for a 5, pay \$1 otherwise.

$$E = 6\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) - 1\left(\frac{4}{6}\right) = 1 + 0.333 - 0.667 = 0.666.$$

$$\boxed{\$0.67 \text{ gain per roll}}$$

Example 8 Binomial probability

Flip a fair coin 8 times. Probability of exactly 6 heads:

$$P = \binom{8}{6} (0.5)^8 = 28/256 = 0.109$$

$$\boxed{0.109}$$

Example 9 Mean and SD of binomial

For Example8: $\mu = 8(0.5) = 4$, $\sigma = \sqrt{8(0.5)(0.5)} = 1.414$.

$$\boxed{\mu = 4, \sigma \approx 1.41}$$

Example 10 Using binomial to approximate expectation

Light-bulb failure probability 0.08. Box of 60 bulbs. Expected failures $\mu = np = 4.8$; SD $\sigma = \sqrt{60(0.08)(0.92)} = 2.1$. Probability at most 3 failures: $P(X \leq 3) = \sum_{r=0}^3 \binom{60}{r} 0.08^r 0.92^{60-r} = 0.35$ (CAS).

$$P(X \leq 3) \approx 0.35$$