

# Area Volume – Question Set

---

## 1. Plane-Figure Areas

**Q1** Rectangle  $13 \text{ cm} \times 9 \text{ cm}$  – find its area.

**Q2** Triangle base  $11 \text{ m}$ , height  $7 \text{ m}$ .

**Q3** Parallelogram: base  $12 \text{ cm}$ , perpendicular height  $5 \text{ cm}$ .

**Q4** Trapezium with parallel sides  $6 \text{ m}$  and  $10 \text{ m}$ , height  $4 \text{ m}$ .

**Q5** Circle diameter  $18 \text{ cm}$ . (a) Find the area.

(b) Find the circumference.

**Q6** A semicircle radius  $5 \text{ cm}$  – find its area.

**Q7** Find the shaded *L*-shape area (two rectangles  $8 \times 3 \text{ m}$  and  $5 \times 2 \text{ m}$  joined).

## 2. Surface Area

**Q8** Closed cylinder  $r = 6 \text{ cm}$ ,  $h = 12 \text{ cm}$ .

**Q9** Rectangular prism  $14 \text{ cm} \times 9 \text{ cm} \times 5 \text{ cm}$ .

**Q10** A right prism has triangular base area  $18 \text{ cm}^2$  and perimeter  $18 \text{ cm}$ ; height  $10 \text{ cm}$ . Find its total surface area.

**Q11** A can (open top) has radius  $4 \text{ cm}$  and height  $9 \text{ cm}$ . Find its exterior surface area.

## 3. Volumes

**Q12** Cuboid  $4 \text{ m} \times 3.5 \text{ m} \times 2.1 \text{ m}$ .

**Q13** Cylinder  $r = 2.5 \text{ m}$ ,  $h = 7 \text{ m}$ .

**Q14** A triangular prism: base triangle  $b = 6 \text{ cm}$ ,  $h = 4 \text{ cm}$ ; prism length  $15 \text{ cm}$ .

**Q15** Water tank holds 12,000 L. If cylindrical, height  $3 \text{ m}$ . Find tank radius (nearest cm).

**Q16** A cone is cut from a cylinder of same base ( $r = 4 \text{ cm}$ ,  $h = 9 \text{ cm}$ ). What fraction of the cylinder's volume is the cone?

## 4. Composite 2-D & 3-D Problems

**Q17** Floor plan: rectangle  $6 \text{ m} \times 5 \text{ m}$  attached to semicircle (diameter  $6 \text{ m}$ ). Find floor area.

**Q18** A garden bed is a trapezium joined to a half-circle (parallel side  $2 \text{ m}$ ). Base =  $4 \text{ m}$ , other parallel side =  $2 \text{ m}$ , height =  $1.8 \text{ m}$ . Find total area (nearest  $0.1 \text{ m}^2$ ).

**Q19** A solid combines a cube  $3 \text{ cm}$  each edge with a square-based pyramid (same base, height  $4 \text{ cm}$ ). Find total volume.

**Q20** A cylindrical column  $r = 0.6 \text{ m}$ ,  $h = 3 \text{ m}$  is to be painted (excluding bases). How many square metres of paint are required?

## 5. Scale Drawings & Conversions

**Q21** On a 1:250 map a playground measures  $5.6 \text{ cm} \times 4.2 \text{ cm}$ . Find its actual area ( $\text{m}^2$ ).

**Q22** Convert  $0.015 \text{ m}^3$  to (a)  $\text{cm}^3$ , (b) litres.

**Q23** A pool is  $9 \text{ m} \times 4 \text{ m} \times 1.5 \text{ m}$ . How many kilolitres of water does it hold?

**Q24** A block of concrete is  $1.2 \text{ m}^3$ . Density =  $2.4 \text{ t/m}^3$ . Find its mass.

## Challenge Question

**Q1** A cylindrical water tower (closed top and bottom) of radius  $3.5 \text{ m}$  is topped with a hemispherical dome of the same radius. The cylindrical wall is  $18 \text{ m}$  tall.

- Calculate the external surface area to be painted (nearest  $\text{m}^2$ ).
- Calculate the total internal volume of water the tower can hold, in kilolitres (nearest kL).
- If paint costs  $\$42$  per  $10 \text{ m}^2$ , estimate the total paint cost (no wastage).