

Trigonometry – Question Set (Expanded)

Q1 Angles of Elevation and Depression

(a) A flagpole casts a 9m shadow when the sun's angle of elevation is 47° . Find the height of the pole.

(a) From a boat, the lighthouse top subtends an elevation of 12° . If the lighthouse is 24m tall, how far is the boat from its base?

(b) From the top of a 35m building the angle of depression to a car on the road is 18° . How far is the car from the base of the building?

(b) A drone hovers 60m above ground. At a point on level ground the elevation angle is 53° . How far horizontally is the observer from the point on the ground directly below the drone?

Q2 Bearings

(a) Convert the compass bearing $S28^\circ E$ to a true bearing.

(b) Convert the true bearing 305° to a compass bearing.

A ranger walks 4km on a true bearing of 064° and then 5km on a true bearing of 152° .

- Represent the journey on a scaled diagram.
- Calculate the resultant displacement from the starting point (distance and true bearing).

Q3 3-Dimensional Right-Triangle Problems

(a) Find the space diagonal of a cuboid $4\text{cm} \times 7\text{cm} \times 10\text{cm}$.

(b) A ladder rests against a wall forming a 70° angle with level ground. If the ladder foot is 1.5m from the wall, how high does it reach?

A kite string is 85m long and makes a 40° angle of elevation to the horizontal. If the flyer stands 12m above sea level on a cliff, how high above sea level is the kite?

Q4 Sine, Cosine and Area Rules

(a) In $\triangle ABC$, $A = 56^\circ$, $B = 68^\circ$, $a = 7.2$ cm. Find side b .

(b) In $\triangle DEF$, $d = 8$ cm, $e = 6$ cm, $\angle D = 42^\circ$. Find side f .

(a) In $\triangle PQR$, $PQ = 6$ cm, $PR = 8$ cm, $QR = 11$ cm. Find $\angle P$.

(b) Given $\triangle XYZ$ with $XY = 14$ m, $YZ = 17$ m, $XZ = 12$ m, find $\angle Y$.

(a) Calculate the area of a triangle with sides 9cm and 12cm enclosing an angle of 65° .

(b) Calculate the area of a triangle with sides 15m and 18m enclosing 48° .

Q5 Unit Circle Identities & Graphs

(a) State $\cos(210^\circ)$ using symmetry on the unit circle.
 (b) Determine $\sin(135^\circ)$ exactly.

A line on the Cartesian plane has gradient 1.2. Find its angle of inclination to the x -axis, correct to the nearest degree.

Q6 Exact Trigonometric Values

(a) Write exact values for $\sin 30^\circ, \cos 45^\circ, \tan 60^\circ$.
 (b) Show that $\cos 30^\circ = \sin 60^\circ$.

Find all angles $0^\circ \leq \theta \leq 180^\circ$ satisfying $\sin \theta = \frac{\sqrt{3}}{2}$.

Q7 Trigonometric Equations

(a) Solve $2 \sin \theta - 1 = 0$ for $0^\circ \leq \theta \leq 360^\circ$.
 (b) Solve $\cos 2\phi = -0.4$ for $0^\circ \leq \phi \leq 360^\circ$.

Solve $3 \tan^2 \alpha = 1$ for $-180^\circ \leq \alpha \leq 180^\circ$.

Q8 Ambiguous Case (Sine Rule)

In $\triangle LMN$, $l = 12$ cm, $m = 14$ cm, $\angle L = 28^\circ$.

a) Determine the possible values of angle M .
 b) For each possible M , find the corresponding side n .

Q9 Challenge Question

From point P the angle of elevation to the top of a tower is 35° . After walking 40m directly toward the tower to point Q , the angle becomes 56° .

a) Show, using two right-angled triangles, that the tower height h satisfies $\tan 35^\circ(d) = h$ and $\tan 56^\circ(d - 40) = h$, where d is the original horizontal distance.
 b) Hence find h and d correct to the nearest metre.