

Working with Functions – Worked Examples

Key Facts / Formulas

- **Index laws** – e.g. $a^m a^n = a^{m+n}$, $(a^m)^n = a^{mn}$, $a^{-n} = 1/a^n$
- **Quadratic discriminant**: $\Delta = b^2 - 4ac$; $\Delta > 0$ two real roots, $\Delta = 0$ equal roots, $\Delta < 0$ no real roots
- A **function** assigns each x exactly one y ; a relation need not be single-valued
- **Vertical-line test**: a graph is a function iff every vertical line meets it once at most
- **Domain / range**: sets of permissible x and resulting y values
- **Even / odd tests**: $f(-x) = f(x)$ (even), $f(-x) = -f(x)$ (odd)
- **Composite function**: $(g \circ f)(x) = g(f(x))$
- **Direct / inverse variation**: $y = kx^n$ (direct), $xy = k$ (inverse) for constant k
- **Circle equation**: $(x - h)^2 + (y - k)^2 = r^2$ centre (h, k) , radius r
- **Piecewise functions**: rule changes on different domain intervals

Example 1 Simplifying with index laws

Simplify $3a^{-2}b^4 \times 6a^3b^{-1}$.

Combine coefficients: $3 \times 6 = 18$; $a^{-2}a^3 = a^1 = a$; $b^4b^{-1} = b^3$.

$$18ab^3$$

Example 2 Algebraic fraction

Simplify $\frac{4x^2 - 9}{2x - 3}$.

Factor numerator as difference of squares: $(2x + 3)(2x - 3)$; Cancel common $(2x - 3)$.

$$2x + 3$$

Example 3 Roots via discriminant

How many real roots does $5t^2 - 4t + 3 = 0$ have?

$$\Delta = b^2 - 4ac = (-4)^2 - 4(5)(3) = 16 - 60 = -44 < 0.$$

No real roots

Example 4 Function or not?

Does the graph of $x^2 + y^2 = 9$ represent y as a function of x ?

Vertical line $x = 0$ meets circle at $(0, 3)$ and $(0, -3)$ two y values.

Not a function

Example 5 Domain & range

For $f(x) = \sqrt{5 - 2x}$ find domain and range.

Inside root ≥ 0 : $5 - 2x \geq 0 \Rightarrow x \leq 2.5$. Domain $(-\infty, 2.5]$. $y \geq 0$ so range $[0, \infty)$.

 Dom $(-\infty, 2.5]$, Ran $[0, \infty)$
Example 6 Even or odd?

Determine if $g(x) = x^3 - 2x$ is even, odd or neither.

$$g(-x) = (-x)^3 - 2(-x) = -x^3 + 2x = -(x^3 - 2x) = -g(x).$$

Odd

Example 7 Composite function value

Let $f(x) = 3x - 5$, $g(x) = x^2 + 1$. Find $(g \circ f)(2)$.

$$f(2) = 3(2) - 5 = 1; g(1) = 1^2 + 1 = 2.$$

2

Example 8 Equation of a line

Find the line through $(4, -1)$ and $(-2, 5)$.

$$\text{Gradient } m = \frac{5 - (-1)}{-2 - 4} = \frac{6}{-6} = -1. \text{ Point-gradient: } y + 1 = -1(x - 4) \Rightarrow y = -x + 3.$$

 $y = -x + 3$
Example 9 Direct variation model

Grape mass m varies directly with volume V ; $m = 250$ g when $V = 190$ cm³. Find m when $V = 220$ cm³.

$$m = kV \rightarrow k = \frac{250}{190} = 1.316. m = 1.316(220) = 289.5 \text{ g.}$$

 $2.90 \times 10^2 \text{ g}$
Example 10 Circle from centre and radius

Centre $(-3, 2)$, radius 5. Write the equation.

$$(x + 3)^2 + (y - 2)^2 = 25.$$

$$(x + 3)^2 + (y - 2)^2 = 25$$